Piperacillin/Tazobactam in Continuous Infusion versus Intermittent Infusion in Children with Febrile Neutropenia

Fortino Solórzano-Santos 1, Anaí Quezada-Herrera 2, Yazmín Fuentes-Pacheco 3, Genoveva Rodríguez-Coello 4, Carlos E. Aguirre-Morales 5, Dassaev Izelo-Flores 6, Onofre Muñoz-Hernández 7, and María G. Miranda-Novales 8

1Research Unit in Evidence-Based Medicine, Hospital Infantil De Mexico “Federico Gómez”, Mexico City; 2Hospital del Niño y del Adolescente Morelense, Morelos; 3High Specialty Medical Unit, Hospital de Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City; 4Hospital para el Niño Poblano, Secretaría de Salud, Puebla de Zaragoza, Puebla; 5Centro Médico ABC, Mexico City; 6Hospital General de Zona No. 20, Instituto Mexicano del Seguro Social, Puebla; 7Research Directorate, Hospital Infantil de México “Federico Gómez”, SSA, Mexico City; 8Analysis and Synthesis of Evidence Research Unit, Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social, Mexico City, Mexico.

ABSTRACT

Background: Febrile neutropenia (FN) is a common complication in children who receive chemotherapy for cancer. Objective: The objective of this study was to evaluate the clinical efficacy of the continuous versus intermittent infusion of piperacillin/tazobactam (TZP) in febrile neutropenic pediatric patients. Methods: This is a non-blinded randomized controlled clinical trial. Eligible group consisted of hemato-oncological patients with FN who were candidates to receive TZP. Patients were randomized to one of two groups: Group 1 received antibiotic treatment through intravenous intermittent infusion of TZP 300 mg/kg/day based on piperacillin, divided into four doses, not exceeding 16 g/day; Group 2 received an initial TZP loading dose of 75 mg/kg infusion over 30 min, and then a continuous infusion of TZP 300 mg/kg/day through central line with pump over 24 h. Results: There were 176 episodes that could be assessed, 100 in Group 1 and 76 in Group 2. There was no statistically significant difference in treatment failure in the experimental group (continuous infusion) compared with the intermittent group, 21% versus 13% (p = 0.15). The increase in the absolute risk reduction was 0.08% (95% confidence interval 0.12-0.30), and the number needed to treat was 12.4. One patient in each group died. Conclusions: There were no differences in fever resolution, clinical cure rate, or mortality when comparing the continuous with the intermittent TZP infusion. (REV INVEST CLIN. 2019;71:283-90)

Key words: Beta-lactams. Febrile neutropenia. Infusion. Piperacillin-tazobactam.

Corresponding author:
*María Guadalupe Miranda-Novales
Unidad de Investigación en Análisis y Síntesis de la Evidencia
Coordinación de Investigación en Salud
Instituto Mexicano del Seguro Social
Av. Cuauhtémoc, 330
Col. Doctores, Del. Cuauhtémoc
C.P. 06720, Mexico City, Mexico
E-mail: guadalumiranda@outlook.es

Received for publication: 10-12-2018
Approved for publication: 23-04-2019
DOI: 10.24875/RIC.19002943
INTRODUCTION

Febrile neutropenia (FN) is a common complication in children who receive chemotherapy for cancer. Fever may be the only indicator of a severe infection and the prompt needs for antimicrobial treatment. According to the current guidelines, initial empirical antimicrobial therapy should cover enteric Gram-negative microorganisms and Pseudomonas aeruginosa in special conditions, coverage for Gram-positive cocci should be included. Monotherapy with an antibiotic-resistant P. aeruginosa are not common, although the clinical course can be devastating, and thus, some authors suggest antimicrobial combinations. Increased prevalence of antimicrobial-resistant infections with Gram-negative bacteria has been reported in children, associated to a higher mortality rate. Empirical antimicrobial treatment in these patients is based on different conditions such as clinical patient characteristics, local resistance patterns, and drug availability. It is of utmost importance that antibiotics achieve optimal tissue concentration in the pediatric population. It has been described that physiological changes in children with cancer in critical conditions can affect the pharmacokinetics of antibiotics, increasing the risk of failure to achieve adequate antimicrobial concentrations, and thus suppress the growth of resistant bacteria. Suboptimal antimicrobial dosing may be associated with poorer clinical outcomes.

Piperacillin/tazobactam (TZP) is a beta-lactam/beta-lactamase inhibitor combination recommended as empirical treatment for pediatric FN patients. The beta-lactam antibiotics are characterized by having a short elimination half-life, which conditions their administration schedule by brief intermittent infusions several times a day. For these antibiotics, a relationship exists between the killing of bacteria and the time that free drug concentration remains above the minimum inhibitory concentration (MIC) against a pathogen. Extending the duration of the infusion is one way to increase the free drug concentrations above the MIC, without using more drug per day. Extended or continuous infusion administration of TZP has been proposed to achieve the best inhibitory concentrations and obtain optimal pharmacodynamics exposures. Due to the low number of circulating neutrophils in children with FN, they depend to a large extent on optimal bactericidal levels of antibiotics.

In our hospital, hemato-oncological patients with FN receive piperacillin/tazobactam monotherapy as empirical treatment since 2007. This treatment was selected due to the high frequency of extended-spectrum beta-lactamase-producing (ESBL) enterobacteria, as a strategy to decrease the selective resistance pressure by ceftazidime and limit their persistence and spread. Considering the pharmacokinetic aspects described in children with cancer, the objective of this study was to evaluate the clinical efficacy of the continuous infusion versus the intermittent administration of TZP in FN pediatric patients.

METHODS

A non-blinded randomized controlled clinical trial was conducted in a third-level pediatric hospital. The eligible group was hemato-oncological pediatric patients (≤ 17 years old), were presented at the hospital with an event of FN, and were candidates to receive empirical antimicrobial treatment with TZP. FN was defined as a single oral temperature of ≥ 38.3°C, or a temperature of ≥ 38.0°C sustained over 1 h and an absolute neutrophil count (ANC) < 500 cells/mm³, or an ANC that is expected to decrease to < 500 cells/mm³ over the next 48 h. The study period included from April 2012 to August 2015. Exclusion criteria: Chemotherapy-associated nephrotoxicity, suspected intravascular device-associated infections, a recent event (< 1 month) of methicillin-resistant Staphylococcus aureus or Streptococcus pneumoniae invasive infection, history of allergic reaction to any beta-lactam, a FN episode 30 days before present admission, patients with severe sepsis or septic shock, and those in palliative care were excluded from the study. Elimination criteria: Chemotherapy-associated nephrotoxicity during the hospital stay while receiving antimicrobial treatment, violations of the protocol, patients with fungal or viral infections as a cause of fever, those with isolation of Gram-positive cocci or multi-resistant Gram-negative bacilli, patients with localized infections (pneumonia, neutropenic colitis, skin and soft tissue infection, and anal fissures/perianal abscesses) that lead to changes in the antimicrobial
treatment in the first 72 h, and patients in the continuous infusion group in whom antibiotic infusion was suspended for more than 4 h.

The study was approved by the institutional ethical committee (number R-2012-3603-14), and informed consent was obtained from the study participants (parents or legal guardians). After parents signed the informed consent form and children the assent form, patients were allocated according to a computer-generated randomization list. Group 1 received antibiotic treatment through an intravenous intermittent infusion of TZP 300 mg/kg/day based on piperacillin, divided into four doses, not exceeding 16 g/day (diluted 50 mg/mL in 5% glucose solution over 30 min) and Group 2 received an initial TZP loading dose of 75 mg/kg infusion over 30 min (diluted 50 mg/mL in 5% glucose solution), and then a continuous infusion of TZP 300 mg/kg/day (diluted 25 mg/mL in 5% glucose solution) through central line with pump over 24 h. Before initiating the protocol, several sessions were conducted with the nursing staff to inform the study procedures. Preparation, administration schedule, and correct infusion rate in both treatment modalities were supervised.

Clinical evaluation was made at admission and every 24 h by two researchers (QHA and FPY). On hospital admission, each patient underwent hematic biometry, C-reactive protein (CRP), blood chemistry, and two peripheral blood cultures (taken from two different venipuncture sites, each 30 min apart) before starting antimicrobial treatment. Blood cultures were processed by BACTEC system (Becton-Dickinson). Growth bacteria and yeast were identified by the VITEK 2 system (bioMérieux).

FN episodes were classified as microbiologically documented infections (MDI), clinically documented infection, and fever of unknown origin (FUO). Outcomes: Clinical cure, when fever subsided within 96 h after starting antimicrobial treatment, or if clinical signs of infection resolved and the patient was discharged after completing the antimicrobial scheme. Treatment failure, if fever persisted and a modification of the initial empirical treatment was done, or if the patient died because of the infection. A protocol violation was defined as a modification of the empirical treatment without criteria for treatment failure.

Antibiotic regimens were adjusted according to microbiological culture results, when available, in consultation with an infectious diseases specialist.

Statistical analysis

Descriptive statistics with simple frequencies and percentages. Comparisons between groups were done with Mantel-Haenszel Chi-square, Fisher’s exact test, and Mann–Whitney U-test. Intention-to-treat analysis and per protocol were performed, as well as calculation of absolute risk reduction and number needed to treat. The sample size was calculated to detect a difference of 15% between the groups, alpha 0.5, beta 0.20, and power of 80%; at least 76 patients per group were needed.

RESULTS

During the study period (April 2012–August 2015), 327 events of FN were evaluated; 86 cases were excluded and 39 refused to participate. A total of 202 episodes were randomized: 112 were assigned to intermittent infusion (Group 1) and 90 to continuous infusion (Group 2). Twelve cases from Group 1 and 14 from Group 2 were eliminated. The causes for elimination were as follows: in Group 1, isolation of a Gram-positive microorganism and clinical infection that required extended antimicrobial coverage (four perianal abscesses and four pneumonias); in Group 2, the isolation of a resistant microorganism in five (two Gram-positive and three ESBL-producing enterobacteriaceae), clinical infection that required extended antimicrobial coverage (two pneumonias and one neutropenic colitis), and five children without an adequate venous access and suspension of antimicrobial infusion for > 4 h, one with a documented viral infection (herpetic stomatitis), and one due to cisplatin-induced tubulopathy (Fig. 1).

There were 176 episodes of FN that could be evaluated, 100 in Group 1 and 76 in Group 2. The male gender was more frequent, 57.3% and 61.8% in each group. Median age was 9 and 10 years old (1-16 year) for Group 1 and Group 2, respectively. There were 34 (19.3%) episodes in patients with acute leukemia (24 acute lymphoblastic leukemia and 10 acute myeloblastic leukemia) and 142 (80.6%) with different neoplasias (solid tumors in 76, non-Hodgkin
lymphoma in 40, central nervous system tumors in 22, and malignant histiocytosis in 4). Disease distributions in groups were as follows: in Group 1, solid tumors were 83% and acute leukemia and lymphomas (non-Hodgkin and Burkitt type), 17%; in Group 2, solid tumors were 75% and leukemia and lymphomas (non-Hodgkin and Burkitt type) 25% (p = 0.20). There were no statistically significant differences in gender, age, type of cancer, comorbidity, neutrophil count and CRP values on admission, filgrastim administration, and intensity of fever (only 15% had > 39.1°C).

There were no statistically significant differences in clinical characteristics of FN episodes between groups (Table 1). There were 9% and 6.5% of MDI (bacteremia) in Group 1 and Group 2, respectively. Most of the episodes corresponded to FUO (81%). Fever decreased in the first 48 h after starting antibiotic therapy in 45% of patients. Improvement of signs and symptoms of infection at 72 h was similar in both groups (80% and 73%). There were 13 (13%) failures in Group 1 (six corresponded to MDI, five were clinically documented, and two were due to FUO), and 16 (21%) in Group 2 (four corresponded to MDI, eight to clinically documented, and four due to FUO). The difference was not statistically significant. One patient in each group died: in Group 1, one patient from septic shock due to Bacillus spp., and in Group 2, one patient with neutropenic enterocolitis (Table 2).
Enterobacteriaceae and other Gram-negative bacteria were the most frequent isolates (Table 3). All *P. aeruginosa* isolates were TZP susceptible, but in one patient (in the continuous infusion group), TZP was changed to a carbapenem due to fever persistence at day 4. In patients with ESBL-producing *Escherichia coli* and *Enterobacter cloacae* isolates, antimicrobial treatment was also changed to a carbapenem. In those patients with *Salmonella enteritidis* isolates, treatment was modified for cefotaxime.

With the failures in the experimental group (continuous infusion) and the intermittent group (21% vs. 13%), the increase in the absolute risk reduction was 0.08 % (95% confidence interval [CI]: 0.03-0.19), and the number needed to treat was 12.4. In the intention-to-treat analysis, assuming that all patients lost or eliminated from the control and the experimental group had the same (acceptable) outcome, the absolute risk reduction was 0.06 (95% CI 0.04-0.177) and the number needed to treat was 16.4 patients.

DISCUSSION

Fever can be the expression of the beginning of a potentially severe infection in cancer patients receiving chemotherapy. An early diagnosis and initiation of the appropriate antimicrobial treatment could be
lifesaving. According to the current clinical guidelines, these patients need to receive empirical antimicrobial treatment, including an antipseudomonal β-lactam or a carbapenem3,4,6. TZP has been recommended as a suitable antibiotic in children7. With standard doses of β-lactams administered in intermittent infusion, a high peak concentration is attained, but a short half-life leads to a fall in plasma drug levels and suboptimal free drug concentration above the MIC (Ft > MIC) against certain pathogens. On the other hand, a prolonged (extended or continuous) antibiotic infusion offers more consistent plasma drug levels and maximizing of Ft > MIC6. Some studies using extended infusion TZP dosing strategies in adult population suggest best reaching of pharmacodynamic targets than with traditional intermittent dosing, and it has been associated with improved clinical outcomes7,10-12. There are fewer reports that explored this strategy in pediatric population; however, implementing extended infusion TZP as standard of care to pediatric patients is suggested to be achievable6,13,14.

In this study, we explored the efficacy of continuous TZP infusion in febrile neutropenic children, and we found that there were no differences in fever resolution, clinical cure rate, and mortality when comparing with intermittent infusion. Results of a recent study comparing extended infusion (4 h) of β-lactams versus bolus administration in FN found that extended infusion was superior (74% vs. 55%) in terms of overall response15. Most of the studies have not demonstrated statistically significant differences in clinical outcomes and mortality16,17, but several authors highlighted the reduction in costs18.

Limitations of this study include a low frequency of episodes with proven bacteremia (8%); some other studies in FN patients showed that this condition does not exceed 15%19. Results in this study are within the range of several reports. In this study, in about 45% of the cases, the fever decreased in the first 48 h of the start of the antibiotic treatment; some authors proposed a limit of 72 h to consider efficacy attributable to the antibiotic, although the average duration of fever is 3-4 days20. It is very likely that patients with fever lasting 24-36 h do not need antimicrobial treatment. Santolaya et al. have proposed to withhold antimicrobial treatment in children with cancer, fever, and neutropenia if a respiratory infection is present until a result of a polymerase chain reaction microarray for 17 respiratory viruses confirm a viral infection21; in our study, most of the patients had FUO. Some authors have ruled out the importance of the administration time for the first dose of antimicrobial in children with FN22. Until rapid and accurate microbiological diagnostic methods are available, cancer patients will continue to receive antimicrobial schemes for their safety. Despite having a higher frequency of P. aeruginosa bacteremia episodes in our study (one-third of the isolates), the outcome was not associated with death, contrary to 38.9% lethality in febrile neutropenic children and adolescents with P. aeruginosa bacteremia reported by Kim et al.4; furthermore, P. aeruginosa strains did not have a multidrug resistance profile.

<table>
<thead>
<tr>
<th>Infections and outcome</th>
<th>Group 1 intermittent TZP infusion (n = 100)</th>
<th>Group 2 continuous TZP infusion (n = 76)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical diagnosis of infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbiologically documented</td>
<td>9</td>
<td>5</td>
<td>0.84</td>
</tr>
<tr>
<td>Clinically documented</td>
<td>7</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Fever of unknown origin</td>
<td>84</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Improvement at 72 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>80</td>
<td>56</td>
<td>0.32</td>
</tr>
<tr>
<td>No</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Treatment failure</td>
<td>13</td>
<td>16</td>
<td>0.15</td>
</tr>
<tr>
<td>Deaths</td>
<td>1</td>
<td>1</td>
<td>0.67</td>
</tr>
</tbody>
</table>
In the present study there were no differences in fever resolution, clinical cure rate and mortality comparing the continuous with the intermittent infusion. Prolonged infusions of beta-lactam antibiotics warrant further evaluation in pediatric patients.

REFERENCES

Table 3. Microorganisms isolated from blood in febrile neutropenia episodes

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Group 1 intermittent infusion (n=9)</th>
<th>Group 2 continuous infusion (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Salmonella enteritidis</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Escherichia coli ESBL+*</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Klebsiella pneumoniae ESBL+</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

*ESBL+: Extended-spectrum β-lactamase producer.

INSTRUCTIONS FOR AUTHORS

The Revista de Investigación Clínica – Clinical and Translational Investigation (RIC-C&TI), publishes original clinical and biomedical research of interest to physicians in internal medicine, surgery, and any of their specialties. The Revista de Investigación Clínica – Clinical and Translational Investigation is the official journal of the National Institutes of Health of Mexico, which comprises a group of Institutes and High Specialty Hospitals belonging to the Ministry of Health. The journal is published both on-line and in printed version, appears bimonthly and publishes peer-reviewed original research articles as well as brief and in-depth reviews. All articles published are open access and can be immediately and permanently free for everyone to read and download. The journal accepts clinical and molecular research articles, short reports and reviews.

Types of manuscripts:
- Brief Communications
- Research Letters
- Original Articles
- Brief Reviews
- In-depth Reviews
- Perspectives
- Letters to the Editor

Brief Communications
Brief Communications are short research articles intended to present new and exciting findings that may have a major impact in medicine. Brief Communications are limited to 4,000 words, including the abstract, introduction, materials and methods, results, discussion, references and figure legends. The total word count must be listed on the title page. In addition, Brief Communications may include no more than three figures and one table, which together may occupy no more than one full page. It is acceptable to include complementary information as supplemental material, but not to move materials and methods or essential figures into supplemental material in order to adhere to these limits. Authors will be contacted if their manuscript does not conform to these guidelines, and will be asked to reduce the content or reclassify the paper as an Original Article.

Research Letters
This section reporting original findings, should be presented in the form of an extended abstract, using the abstract style of a full Original Article. (Background, Methods, Results, and Discussion –instead of Conclusions). Research Letters should be no longer than 800 words or 4000 characters (not including acknowledgments, table, figure, or references), 5 references, and may include 1 table and/or figure. Online supplementary material is not allowed for this category. The text should include all authors’ information required for a full Original Article, including the e-mail address of the corresponding author. Letters must not duplicate other material published or submitted for publication and they should not include an abstract.

Original Articles
Original Articles are scientific reports of the results of original clinical, biomedical and translational research. Original Articles are limited to six to eight printed pages in length including abstract, illustrations, tables and references. Non-essential information (tables, figures and other type of information) can be submitted as supplementary material, which will be only published on line.

Brief Reviews
These reviews are four to six journal pages in length, including illustrations and references. They should cover a focused area on the advancing edge of medicine providing a balanced view of current advances that can be understood by clinicians and researchers outside of the specialty of the topic. Although these reviews are usually prepared by invitation from the Editors, authors interested in submitting an article to Brief Reviews should contact the Editor in Chief or Deputy Editors, including an outline of the proposed review and a brief CV that includes their publications. The body of the manuscript (not including the front page, abstract, references, tables, and supplementary data) should not exceed 20 double-spaced pages, letter size. Up to 30 references and 3 figures (should be in color, if possible) are acceptable.

In-depth Reviews
Each issue of the journal contains one or two timely in-depth reviews written by leaders in the field covering a range of topics in clinical, biomedical and/or translational medicine. In-depth Reviews should present authoritative, up-to-date information on a particular topic, placing it in the context of a field’s history, development, current knowledge, and perspectives. These reviews are eight to ten journal pages in length, including references but not illustrations. Although these reviews are usually prepared by invitation from the Editors, authors interested in submitting an article to In-depth Reviews should submit a proposal by e-mail to the Editor-in-Chief or Deputy Editors, including an outline of the proposed review and a brief CV that includes their publications. The body of the manuscript (not including the front page, abstract, references, tables, and supplementary data) should not exceed 30 double-spaced pages, letter size. Up to 50 references and 5 figures (should be in color, if possible) are acceptable.

Perspectives
These brief articles are comments on recent advances in medicine and/or surgery and how these new findings may impact the view of physicians for future applications in diagnosis and/or therapeutics. They should be up to 1200 words of text—or 1000 words- with 1 small table and/or figure (excluding title, byline, and references), no more than 7 references and up to 3 authors.

Letters to the Editor
The Editor-in-Chief invites brief letters (250 words or less) of general interest, commenting on work published in the RIC-C&TI within the previous six months. A limited number of letters will be selected for publication. The authors of the original work will be invited to respond and both the original letter and the authors’ response will be published together.

Submission of manuscripts
Please write your text in good American English. It is advisable that authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English, consult an English language expert before submitting the manuscript, to prevent delays in the reviewing/printing processes.

Submission to The Revista de Investigación Clínica –Clinical and Translational Investigation should be totally online and you will be guided stepwise through the uploading process of your files. Please note that if you send your files in PDF format, the source files will be needed for further processing after acceptance. All correspondence, including notification of the Editor’s decision and requests for revision, takes place by e-mail removing the need for a paper trail.

Referees
Please submit the names and institutional e-mail addresses of several potential referees as well as of undesired reviewers. Note that the editor in charge of your manuscript retains the sole right to decide whether or not the suggested reviewers are used.

New submissions
Submission to this journal proceeds totally online. You may choose to submit your manuscript as a single file to be used in the refereeing process. This can be a PDF file or a Microsoft Word document, so that can be used by referees to evaluate your manuscript. It should contain high quality figures for refereeing. Please note that individual figure files larger than 10 MB must be uploaded separately.

Formatting requirements
All manuscripts must contain the essential elements needed to convey your original work will be invited to respond, and both the original letter and the authors’ response will be published together.

Revised submissions
Regardless of the file format of the original submission, at revision you must provide us with an editable file of the entire article in Microsoft Word. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. The electronic text should be prepared in a way very similar to that of conventional manuscripts. To avoid unnecessary errors you are strongly advised to use the ‘spell-check’ and ‘grammar-check’ functions of your word processor.

Article structure
Title: Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations where possible.
Author names and affiliations: Where the family name may be ambiguous (eg., a double name), please indicate this clearly. Present the authors’ affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author’s name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name. DO NOT INCLUDE THE INSTITUTIONAL POSITIONS OF THE AUTHORS.

Corresponding author: Clearly indicate who will handle correspondence at all stages of refereeing and publication, and also post-publication. Be sure to include phone numbers (with country and area code) in addition to the e-mail address and the complete postal address. Contact details must be kept up to date by the corresponding author.

Present/permanent address: If an author has moved or change institution since the work described in the article was done, or was visiting at the time, a ‘Present address’ may be indicated as a footnote to that author’s name. The address at which the author actually did the work must be retained as the main affiliation address. Superscript Arabic numerals are used for such footnotes.

Abstract
The abstract should be short and concise, limited to 200 words and should be presented as a Structured Abstract (Background – Objective, Methods, Results and Conclusions). Do not cite references in the Abstract. Abbreviations can be used but they should be defined only once and at it first use unless it is a standard unit of measurement.

Introduction
State clearly the objectives of the work and provide an adequate background, avoiding a detailed literature review or a summary of the results. The full term for which an abbreviation stands should precede its first use in the text, no matter if it has been used in the Abstract.

Material and Methods
Describe clearly and identify all important characteristics of the observational or experimental subjects or laboratory animals. Specify carefully what the descriptors mean, and explain how the data were collected. Identify the methods, apparatus with the manufacturer’s name and address in parentheses (city and country), and procedures in sufficient detail to allow the work to be reproduced by others. Provide references to established methods and statistical methods, used. Methods already published should be indicated by a reference and not described in extense, and only relevant modifications should be described. Identify precisely all drugs and chemicals used. Use only generic names of drugs. All measurements should be expressed in SI units. Approval by the local ethical committee of the institution(s) where the work was done should be mentioned. Never use patients’ names, initials, or hospital numbers, especially in illustrative material. Papers dealing with experiments on animals should indicate that the institution’s research council’s guidelines for the care and use of laboratory animals was followed. At the end of the Material and Methods section include –as a Statistical Analysis subheading– all statistical tests employed with sufficient clarity to enable a knowledgeable reader with access to the original data to verify the reported results. Wherever possible, quantify findings and present them with appropriate indicators of measurement error or uncertainty. Specify any general-use computer programs used. Formulae and equations should be included as Supplementary Information.

Results
Results should be clear and concise, and presented in logical sequence in text, figures and tables. Do not repeat what has been described in the preceding sections. Figures should be numbered consecutively. Preferred formats are .eps, .pdf, or .tiff. Please ensure the quality of scanned items is high enough for correct reproduction. All numbers, tables, and legends by Arabic numerals in parenthesis (not in superscript), and they should appear before the ending punctuation if at the end of a sentence. References style should follow the NLM standards summarized in the International Committee of Medical Journal Editors (ICMJE) Recommendations for the Conduct, Reporting, Editing and Publication of Scholarly Work in Medical Journals: Sample References, available at the web-page http://www.nlm.nih.gov/bsd/uniform_requirements.html. List the first six authors followed by et al. and neither DOI nor database’s unique identifier (e.g. PubMed PMID), month and issue number should be included in the reference.

Supplementary information
Supplementary information is allowed in the RIC-C&TI in order to avoid an excessive number of tables and figures in the main text. Figures, tables, and other supplementary information (e.g., formulae and equations) should be numbered as Table S1, S2, etc., or Figure S1, S2, etc., or Formulae/Equation (S1), (S2), etc. Supplementary information is only published in the online version at the end of the article, following the Reference list.

Illustrations
Figures include graphs, photographs and diagrams. The purpose of a figure is to present complex or graphic experimental results and analyses as an image. The accompanying figure caption (at the end of the manuscript) should contain enough information so that the reader can understand the figure without referring to the description in the text of the paper. In other words, the figure and its caption should be understood without reading any other part of the paper. Figures should be numbered consecutively according to the order in which they have been first cited in the text. If photographs of patients are used, the subjects must not be identifiable. The preferred formats are JPEG and TIFF. Do not send figures as PowerPoint or PDF files. The minimum resolution should be 300 dpi. PLEASE DO NOT EMBED FIGURES WITHIN THE MANUSCRIPT TEXT FILE OR EMBED THE FIGURE LEGEND WITHIN THE FIGURE.

Submission checklist
The following list will be useful during the final checking of an article prior to sending it to the Revista de Investigación Clínica – Clinical and Translational Investigation. Please be sure that following items are present:

– A front letter addressed to the Editor-in-Chief of the journal and signed by the corresponding author, requesting the consideration of the article for publication in the RIC-C&TI, and stating that the manuscript is not under review in another journal.
– The entire text of the manuscript (see Formatting Requirements), with lines numbered.
– Corresponding author E-mail address, full postal address, and telephone.
– All necessary files of the figures (one file per figure) have been uploaded.
– Manuscript has been check for spelling and grammar.

Other:

– All references mentioned in the Reference List are cited in the text, and vice versa.
– Permission has been obtained for use of copyrighted material from other sources (including the Web).
– Color figures are clearly marked as being intended for color reproduction online (free of charge) and in print (to be charged), or to be reproduced in color online (free of charge) and in grey tones in the print version (free of charge).

Online submission
Manuscripts should be uploaded in the following Website: http://publisher.clinicalandtranslationalinvestigation.permanyer.com/